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1
METHOD FOR FORMING FILM HAVING
LOW RESISTANCE AND SHALLOW
JUNCTION DEPTH

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to a method for
forming on a substrate an arsenosilicate glass (ASG or
AsSQG) film with a cap film.

2. Related Art

Metal-oxide-semiconductor field effect transistors (MOS-
FETs) are fundamental switching devices to perform logic
operations in large scale integrated circuits (LSIs). As the
downsizing of MOSFETs progress, decrease in junction
depth (Xj) and increase in doping concentration are indis-
pensable in the scaling trend. FinFETs and Tri-gate FETs
have fin structures for source/drain extension, and such
devices require reduction of lateral resistance (or sheet
resistance) of the source/drain extension regions to obtain
larger drain current by scaling down of MOSFETs. There-
fore, both shallow Xj (Xj is defined as the depth where
dopant concentration is 5x10'%/cm?®) and low sheet resis-
tance (Rs) of the source/drain extension regions are indis-
pensable for further scaling down of MOSFETs. However,
reducing Rs at shallow regions (e.g., Xj<10 nm) has not
been successful. The above characteristics also are impor-
tant to turn-on voltage-modulation by Ground-Plane (GP)
technique for Tunnel Field-Effect Transistor (TFET).

Any discussion of problems and solutions in relation to
the related art has been included in this disclosure solely for
the purposes of providing a context for the present invention,
and should not be taken as an admission that any or all of the
discussion was known at the time the invention was made.

SUMMARY OF THE INVENTION

Some embodiments provide a method for providing a thin
film having a sheet resistance (Rs) of less than 1,000 ohm/sq
with a junction depth (Xj) of less than 10 nm (preferably, an
Rs of less than 500 ohm/sq with an Xj of less than 5 nm).
In some embodiments, an arsenosilicate glass (ASG) film
using arsenic (As) as n-type dopant is used in combination
with a SiN cap, wherein a surface of the ASG film is treated
in situ with a particular gas before forming the SiN cap. In
some embodiments, the gas used for treating the surface of
the ASG film is a combination of nitrogen gas, silane gas,
hydrogen gas, and a noble gas. In some embodiments, the
SiN cap is formed by plasma-enhanced atomic layer depo-
sition (PEALD). In some embodiments, the ASG film is
formed using solid-state doping. In some embodiments, the
doping method is suitable for extension-doping in FinFETs
or ground-plane doping in TFETs. In accordance with fur-
ther exemplary embodiments, a method of realizing an Rs of
less than 1,000 ohm/sq with an Xj of less than 10 nm is
provided.

For purposes of summarizing aspects of the invention and
the advantages achieved over the related art, certain objects
and advantages of the invention are described in this dis-
closure. Of course, it is to be understood that not necessarily
all such objects or advantages may be achieved in accor-
dance with any particular embodiment of the invention.
Thus, for example, those skilled in the art will recognize that
the invention may be embodied or carried out in a manner
that achieves or optimizes one advantage or group of advan-
tages as taught herein without necessarily achieving other
objects or advantages as may be taught or suggested herein.

w

10

15

20

25

30

35

40

45

50

55

60

65

2

Further aspects, features and advantages of this invention
will become apparent from the detailed description which
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will now be
described with reference to the drawings of preferred
embodiments which are intended to illustrate and not to limit
the invention. The drawings are greatly simplified for illus-
trative purposes and are not necessarily to scale.

FIG. 1A is a schematic representation of a PEALD
(plasma-enhanced atomic layer deposition) apparatus for
depositing a dielectric film usable in an embodiment of the
present invention.

FIG. 1B illustrates a schematic representation of switch-
ing flow of an inactive gas and flow of a precursor gas usable
in an embodiment of the present invention.

FIG. 2 is a schematic representation of lamination pro-
cesses (a) to (b), indicating schematic cross sections of a
partially fabricated integrated circuit according to a com-
parative example.

FIG. 3 is a schematic representation of lamination pro-
cesses (a) to (c), indicating schematic cross sections of a
partially fabricated integrated circuit according to an
embodiment of the present invention.

FIG. 4 is a graph showing a target area defined by sheet
resistance (Rs) and junction depth (Xj) according to an
embodiment of the present invention, in relation to those of
comparative examples.

FIG. 5 is an illustrative representation of the graph of FIG.
4.

DETAILED DESCRIPTION OF EMBODIMENTS

In this disclosure, “gas” may include vaporized solid
and/or liquid and may be constituted by a single gas or a
mixture of gases. In this disclosure, a process gas introduced
to a reaction chamber through a showerhead may be com-
prised of, consist essentially of, or consist of a silicon-
containing gas and an additive gas. The silicon-containing
gas and the additive gas can be introduced as a mixed gas or
separately to a reaction space. The silicon-containing gas
can be introduced with a carrier gas such as a noble gas. A
gas other than the process gas, i.e., a gas introduced without
passing through the showerhead, may be used for, e.g.,
sealing the reaction space, which includes a seal gas such as
a noble gas. In some embodiments, “film” refers to a layer
continuously extending in a direction perpendicular to a
thickness direction substantially without pinholes to cover
an entire target or concerned surface, or simply a layer
covering a target or concerned surface. In some embodi-
ments, “layer” refers to a structure having a certain thickness
formed on a surface or a synonym of film or a non-film
structure. A film or layer may be constituted by a discrete
single film or layer having certain characteristics or multiple
films or layers, and a boundary between adjacent films or
layers may or may not be clear and may be established based
on physical, chemical, and/or any other characteristics,
formation processes or sequence, and/or functions or pur-
poses of the adjacent films or layers.

Further, in this disclosure, the article “a” or “an” refers to
a species or a genus including multiple species unless
specified otherwise. The terms “constituted by” and “hav-
ing” refer independently to “typically or broadly compris-
ing”, “comprising”, “consisting essentially of”, or “consist-
ing of” in some embodiments. Also, in this disclosure, any
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defined meanings do not necessarily exclude ordinary and
customary meanings in some embodiments.

Additionally, in this disclosure, any two numbers of a
variable can constitute a workable range of the variable as
the workable range can be determined based on routine
work, and any ranges indicated may include or exclude the
endpoints. Additionally, any values of variables indicated
(regardless of whether they are indicated with “about” or
not) may refer to precise values or approximate values and
include equivalents, and may refer to average, median,
representative, majority, etc. in some embodiments.

In the present disclosure where conditions and/or struc-
tures are not specified, the skilled artisan in the art can
readily provide such conditions and/or structures, in view of
the present disclosure, as a matter of routine experimenta-
tion. In all of the disclosed embodiments, any element used
in an embodiment can be replaced with any elements
equivalent thereto, including those explicitly, necessarily, or
inherently disclosed herein, for the intended purposes. Fur-
ther, the present invention can equally be applied to appa-
ratuses and methods.

The embodiments will be explained with respect to pre-
ferred embodiments. However, the present invention is not
limited to the preferred embodiments.

In some embodiments, a method for forming on a sub-
strate a doped silicon oxide film with a cap film, comprises:
(1) forming an arsenosilicate glass (ASG) film as an arsenic
(As)-doped silicon oxide film on a substrate; (ii) continu-
ously treating a surface of the ASG film with a treating gas
constituted by Si, N, and H without excitation; and (iii)
continuously forming a silicon nitride (SiN) film as a cap
film on the treated surface of the ASG film. By using the
ASG film, in place of phosphorus-doped silicon dioxide
glass (PSG) film, in combination with the SiN cap in place
of'a SiO cap, and treating in situ a surface of the ASG film
with the treating gas prior to depositing the SiN cap thereon,
a structure where a sheet resistance (Rs) is as low as 1,000
ohm/sq (preferably 500 ohm/sq or less), and a junction depth
(X)) (as the depth of 5SE+18 atom/cm?) is as small as 10 nm
(preferably 5 nm or less) can be fabricated, indicating that
the concentration of dopant (As) is high only in a top surface
of the substrate at the interface (i.e., high concentration and
shallow diffusion of dopant into the substrate). In some
embodiments, the in-film concentration of As in the ASG
film is approximately 1E+22 atom/cm®. Conventionally, it
was not successful to reduce Rs when Xj was as small as 10
nm. Arsenic does not diffuse as much in a silicon substrate
as does phosphorus, thereby contributing to a small junction
depth, and also, the SiN cap blocks diffusion of As more than
does a SiO cap if the interface is not exposed to air, thereby
contributing to higher concentration of As on the substrate
side than the cap side. Without being limited by the theory,
as a result, both a low Rs and a low Xj can be achieved
according to some embodiments. In this disclosure, the
“ASG” film and “SiN” film can contain impurities including
unavoidable elements to the extent accepted by one of
ordinary skill in the art as an “ASG” film and “SiN” film,
respectively. In some embodiments, the substrate is a silicon
wafer or has an underlying semiconductor layer such as a
silicon layer.

In some embodiments, a sheet resistance (Rs) and an As
junction depth (Xj) at an interface between the ASG film and
the substrate after an annealing step are approximately 500
ohm/sq or less (e.g., 100 ohm/sq to 400 ohm/sq), and
approximately 5 nm or less (e.g., 1 nm to 4 nm), respec-
tively.
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4

In this disclosure, the word “continuously” refers to at
least one of the following: without breaking a vacuum,
without being exposed to air, without opening a chamber, as
an in-situ process, without interruption as a step in sequence,
without changing process conditions, and without causing
chemical changes on a substrate surface between steps,
depending on the embodiment. In some embodiments, an
auxiliary step such as purging or other negligible step in the
context does not count as a step, and thus, the word
“continuously” does not exclude being intervened with the
auxiliary step. By continuously conducting steps (i) through
step (ii1), the surface of the ASG film is treated with the
treating gas fully without being exposed to air or any other
oxygen-containing atmosphere throughout steps (i) to (iii),
so that the high concentration of dopant can be maintained
in the ASG film. In some embodiments, steps (i) to (iii) are
conducted in a same reaction chamber. Accordingly, pro-
ductivity can significantly be improved. Since step (ii) is
conducted without exciting gases, substantially no film is
formed on the surface of the ASG film, but gases are
adsorbed on the surface of the ASG film. By way of'step (ii),
the interface between the ASG film and the SiN cap can
effectively block diffusion or migration of As from the ASG
film toward the SiN cap. A combination of Si, N, and H
included in the treating gas is effective because these gases
can be used for SiN cap formation and their flow can fully
be stabilized before the SiN cap formation starts.

In some embodiments, all the gases including the treat-
ment gas used in step (ii) are identical to all the gases used
in step (iii), so that step (ii) and step (iii) can continuously
be conducted without any interruption or any intervention
therebetween, thereby not only increasing productivity but
also forming the SiN cap layer having a more effective
interface for blocking diffusion of the dopant. In some
embodiments, all the gases including the treatment gas used
in step (ii) are identical to all the gases used in step (iii) not
only in kind but also in quantity (flow rate). In some
embodiments, in step (ii), the treating gas is supplied with a
noble gas such as helium (He), neon (Ne), argon (Ar),
krypton (Kr), and/or xenon (Xe). In some embodiments, the
treating gas in step (ii) comprises N, gas, SiH, gas, and H,
gas, or other silicon-containing gas such as Si,Hg and other
nitrogen- and hydrogen-containing gas such as NH;. Due to
the surface treatment, gas feeds for the SiN cap formation
can effectively be stabilized before starting the SiN cap
formation, and changing the recipe for the SiN cap forma-
tion (mainly changing the setting of a plasma generator) can
smoothly be accomplished.

In some embodiments, the concentration of As in the ASG
film is approximately 1E+22 atom/cm?, and the thickness of
the ASG film formed in step (i) is approximately 5 nm or less
(typically 0.5 nm to 5 nm).

In some embodiments, in step (i), the ASG film is formed
by atomic layer deposition (ALD) with solid-state doping. In
some embodiments, the solid-state doping is conducted at a
temperature of approximately 300° C. or lower. In some
embodiments, the ALD is a plasma-enhanced ALD. In some
embodiments, the solid-state doping is conducted based on
the disclosure of U.S. Patent Application Publication No.
2013/0115763, the disclosure of which is herein incorpo-
rated by reference in its entirety. Any suitable method of
forming an ASG film, including any conventional methods
such as plasma doping, ion-assisted deposition and doping
(IADD), spin-on coating, sub-atmospheric pressure chemi-
cal vapour deposition (SACVD), or ALD, can be used in
some embodiments.
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In some embodiments, the thickness of the SiN film
formed in step (iii) is approximately 5 nm or less (typically
0.5 nm to 5 nm). In some embodiments, the SiN film is
deposited by atomic layer deposition (ALD). In some
embodiments, the ALD is a plasma-enhanced ALD. Any
suitable method of forming a SiN cap, including any con-
ventional methods such as low-pressure CVD or PEALD
(such as U.S. Patent Application Publication No. 2014/
0141625 and No. 2013/0330933, each disclosure of which is
herein incorporated by reference in its entirety), can be used
in some embodiments.

In some embodiments, the method further comprises,
after step (iii), annealing the SiN film formed on the ASG
film. In this disclosure, “annealing” refers to a process which
dopant such as phosphorous or arsenic is diffused into the
silicon substrate.

In some embodiments, the ASG film may be formed as a
solid-state doping (SSD) layer by PEALD, one cycle of
which is conducted under conditions shown in Table 1
below.

TABLE 1

(the numbers are approximate)
Conditions for ASG Film Deposition

Substrate temperature
Pressure
Silicon precursor

50 to 400° C. (preferably 100 to 300° C.)
133 to 800 Pa (preferably 200 to 600 Pa)
Silicon-containing precursor such as
bis(diethylamino)silane (BDEAS),

Silicon precursor pulse 0.05 to 5.0 sec (preferably 0.2 to
1.0 sec)

Silicon precursor purge 0.1 to 10.0 sec (preferably 0.3 to
1.0 sec)

Dopant precursor Arsenic-containing precursor such

as arsenic triethoxide

0.05 to 5.0 sec (preferably 0.1 to 3,
or 0.2 to 1.0 sec)

0.1 to 10.0 sec (preferably 0.3 to 5,
or 0.3 to 1.0 sec)

Oxidizing gas such as oxygen, ozone
10 to 4000 scem (preferably 1000 to
2000 scem)

Dopant precursor pulse
Dopant precursor purge
Reactant

Flow rate of reactant
(continuous)

Dilution gas (rare gas) He, Ar
Flow rate of dilution gas 100 to 6000 scem (preferably 2000 to
(continuous) 4000 scem)

RF power (13.56 MHz) for
a 300-mm wafer

RF power pulse

Purge upon the RF power
pulse

Thickness of film

10 to 1,000 W (preferably 30 to 500 W)

0.1 to 10 sec (preferably 0.1 to 5 sec)
0.1 to 10 sec (preferably 0.05 to 4 sec)

0.5 to 10 nm (preferably 0.5 to 5 nm)

The dopant precursor may be provided with the aid of a
carrier gas. Since ALD is a self-limiting adsorption reaction
process, the number of deposited precursor molecules is
determined by the number of reactive surface sites and is
independent of the precursor exposure after saturation, and
a supply of the precursor is such that the reactive surface
sites are saturated thereby per cycle.

In some embodiments, an arsenosilicate glass ALD cycle
comprises a silicon phase, a dopant phase and an oxidation
phase. The silicon phase comprises providing a pulse of
BDEAS to a reaction chamber comprising a substrate.
Excess BDEAS is removed and the substrate is contacted
with a pulse of a dopant precursor in the dopant phase.
Excess dopant precursor and reaction by-products, if any,
are removed. The substrate is then contacted with oxygen
plasma to form a boron or phosphorous-arsenosilicate glass.
The oxygen plasma may be generated in situ, for example in
an oxygen gas that flows continuously throughout the ALD

20

25

30

40

55

60

65

6

cycle. In other embodiments the oxygen plasma may be
generated remotely and provided to the reaction chamber.

As mentioned above, each pulse or phase of each ALD
cycle is preferably self-limiting. An excess of reactants is
supplied in each phase to saturate the susceptible structure
surfaces. Surface saturation ensures reactant occupation of
all available reactive sites (subject, for example, to physical
size or “steric hindrance” restraints) and thus ensures excel-
lent step coverage. In some embodiments the pulse time of
one or more of the reactants can be reduced such that
complete saturation is not achieved and less than a mono-
layer is adsorbed on the substrate surface. However, in some
embodiments the dopant precursor step is not self-limiting,
for example, due to decomposition or gas phase reactions.

In some embodiments, the silicon precursor and the
dopant precursor are both provided prior to any purge step.
Thus, in some embodiments a pulse of silicon precursor is
provided, a pulse of dopant precursor is provided, and any
unreacted silicon and dopant precursor is purged from the
reaction space. The silicon precursor and the dopant precur-
sor may be provided sequentially, beginning with either the
silicon precursor or the dopant precursor, or together. In
some embodiments, the silicon precursor and dopant pre-
cursor are provided simultaneously. The ratio of the dopant
precursor to the silicon precursor may be selected to obtain
a desired concentration of dopant in the deposited thin film.

The ratio of silicon precursor cycles to dopant precursor
cycles may be selected to control the dopant concentration
in the ultimate film deposited by the PEALD process. For
example, for a low dopant density, the ratio of dopant
precursor cycles to silicon precursor cycles may be on the
order of 1:10. For a higher concentration of dopant, the ratio
may range up to about 1:1 or higher such as 1.5:1, 2:1, 2.5:1,
3:1, 4:1, etc. In some embodiments all of the deposition
cycles in an ALD process may be dopant precursor cycles.
The ratio of deposition cycles comprising dopant to depo-
sition cycles that do not include dopant (such as the ratio of
dopant precursor cycles to silicon precursor cycles, or the
ratio of dopant oxide cycles to silicon precursor cycles) may
be referred to as the control knob. For example, if one
dopant precursor cycle is provided for every four silicon
precursor cycles, the control knob is 0.25. If no undoped
oxide cycles are used, the control knob may be considered
to be infinite.

By controlling the ratio of dopant precursor cycle to
silicon precursor cycle, the dopant concentration can be
controlled from a density range of about 0 atoms of dopant
to about 5E+22/cm’ atoms of dopant. Density may be
measured, for example, by SIMS (secondary-ion-probe
mass spectrometry).

In addition, the dopant density can be varied across the
thickness of the film by changing the ratio of dopant
precursor cycles to silicon precursor cycles during the
deposition process. For example, a high density of dopant
may be provided near the substrate surface (lower ratio of
silicon precursor cycles to dopant precursor cycle), such as
near a Si surface and the density of dopant at the top surface
away from the substrate may be low (higher ratio of silicon
precursor cycles to dopant precursor cycles). In other
embodiments a high density of dopant may be provided at
the top surface with a lower density near the substrate
surface.

In some embodiments, an arsenosilicate glass layer is
formed by providing a dopant precursor cycle at certain
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intervals in a silicon oxide deposition process. The interval
may be based, for example, on cycle number or thickness.
For example, one or more dopant precursor deposition
cycles may be provided after each set of a predetermined
number of silicon precursor deposition cycles, such as after
every 10, 20, 50, 100, 200, 500 etc. cycles. In some
embodiments, undoped silicon oxide deposition cycles may
be repeated until a silicon oxide layer of a predetermined
thickness is reached, at which point one or more dopant
precursor cycles are then carried out. This process is
repeated such that dopant is incorporated in the film at
specific thickness intervals. For example, one or more
dopant precursor cycles may be provided after each 5 nm of
undoped Si0O, that is deposited. The process is then repeated
until an arsenosilicate glass thin film of a desired thickness
and composition has been deposited.

In some embodiments in an ALD process for producing
arsenosilicate glass films, one or more “dopant oxide”
deposition cycles are provided along with undoped silicon
oxide deposition cycles. The process may also include one
or more arsenosilicate glass deposition cycles.

In the “dopant oxide” deposition cycles, the silicon pre-
cursor is omitted from the arsenosilicate glass deposition
cycles described above. Thus, the substrate is exposed to
alternating and sequential pulses of dopant precursor and an
oxidant, such as oxygen plasma. Other reactive oxygen
sources may be used in some embodiments. In some
embodiments, an arsenosilicate glass film is provided by
conducting multiple dopant oxide deposition cycles and
multiple silicon oxide deposition cycles. The ratio of dopant
oxide cycles to silicon precursor cycles may be selected to
control the dopant concentration in the ultimate arsenosili-
cate glass film. For example, for a low dopant density, the
ratio of dopant oxide cycles to silicon precursor cycles may
be on the order of 1:10. In other embodiments a high dopant
density is achieved by increasing the ratio of dopant oxide
cycles to silicon precursor cycles to 1:1 or even higher, such
as 1.5:1, 2:1, 2.5:1, 3:1, 4:1 etc. For example, for a high
dopant density, such as a high B density, the ratio of dopant
oxide cycles to silicon precursor cycles may be on the order
of 6:1, or even 10:1.

The density can be varied across the thickness of the film
by changing the ratio of dopant oxide cycles to silicon oxide
cycles during the deposition process. For example, a high
density of dopant may be provided near the substrate surface
by using a lower ratio of silicon oxide cycles to dopant oxide
cycles and the density of dopant at the top surface may be
lower by providing a higher ratio of silicon oxide cycles to
dopant oxide cycles.

In some embodiments, an in-situ plasma pre-treatment of
the substrate is conducted before SSD layer deposition to
enhance doping efficiency into the Si fin. For example, H,
plasma pre-treatment can provide some tuning space for
FinFET device design. The pre-treatment is not limited only
H, plasma. In some embodiments, the pre-treatment plasma
may be selected from Ar, He, H,, fluorine-containing gas,
and their mixed gas plasma.

In some embodiments, the ALD cycle disclosed in U.S.
Patent Application Publication No. 2013/0115763, the dis-
closure of which is incorporated by reference in its entirety,
can be employed for the ASG film (referred to also as
“dopant layer”).

In some embodiments, the dopant layer is treated with a
treating gas under conditions shown in Table 2 below.
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TABLE 2

(the numbers are approximate)
Conditions for Surface Treatment

Susceptor temperature 100 to 550° C. (preferably 200 to 300° C.)
(the temperature of the wall is typically
about 130° C., and the temperature of

the showerhead is typically about 150° C.)

Pressure 50 to 1,000 Pa (preferably 200 to 400 Pa)
Si-containing gas SiH,, Si,Hg.

Flow rate of Si-containing 10 to 500 scem (preferably 50 to

gas (continuous) 400 sccm)

N-containing gas N,
Flow rate of N-containing 250 to 3,000 scem (preferably 500 to

gas (continuous) 1500 scem)

H-containing gas H,, NH;

Flow rate of H-containing 100 to 2,000 scem (preferably 250 to
gas (continuous) 500 scem)

Alternatively, N/H-containing NH;, N2H2.

gas (continuous)

Flow rate of N/H-containing
gas (continuous)

Ratio of SI/N/H

Dilution gas

Flow rate of dilution gas
(continuous)

100 to 2,000 scem (preferably 250 to
500 scem)

2/(5-20)/(3-10) (preferably 2/(8-12)/(3-8)
Inert gas such as Ar, He, N,

Ar: 0 to 2,000 scem (preferably O to
1000 scem);

He: 0 to 2,000 scem (preferably O to
1000 scem)

Noble gas such as He (about 200 sccm)
1 to 30 sec (preferably 10 to 20 sec)

Seal gas
Duration of Treatment

Although the surface treatment is continuously conducted
after completion of the ALD cycle, the surface treatment is
not conducted as a part of the ASG film formation, but is a
discrete step which is distinguished from the ASG film
formation, i.e., the surface treatment is initiated after the
ASG film formation is completely finished. For example, the
surface treatment is not any part of ALD cycles for the ASG
film and is initiated after purging upon completion of the
ALD cycles (which purging is conducted using, e.g., a noble
gas as such as Ar at a flow rate of 950 to 2,000 sccm for 3
to 60 seconds to remove O, used in the ASG film formation
prior to feeding SiH, used in the surface treatment). Further,
although the SiN cap formation is continuously conducted
after completion of the surface treatment, the surface treat-
ment is not conducted as a part of the SiN cap formation, i.e.,
the surface treatment is not initiated as a start-up step of the
SiN cap formation although the SiN cap formation is con-
tinuously conducted upon the surface treatment (without any
intervening step including purging). For example, the sur-
face treatment is not any part of ALD cycles for the SiN cap.
However, in some embodiments, gases which are the same
as those used in the ALD cycles for the SiN cap can be used
for the surface treatment. Further, in some embodiments, the
flow rates of these gases in the surface treatment can be the
same as those for the ALD cycles for the SiN cap. In some
embodiments, continuingly fed gas such as dilution gas in
the surface treatment can be continuously fed to the reaction
space for the ALD cycles for the SiN cap after completion
of the surface treatment without interruption. Alternatively,
in some embodiments, at least some conditions for the
surface treatment can be different from those for the ALD
cycles for the SiN cap.

By avoiding exposure of the surface of the dopant layer to
air or other oxygen-containing atmosphere, and by exposing
the surface to a Si/N/H gas (i.e., a gas constituted by Si, N,
and H), when the surface is covered with a cap layer, loss of
dopant from the dopant layer can effectively be inhibited.
Since the gases are not excited, the gases are adsorbed on the
surface in a manner of chemisorption, typically, no film is
formed on the surface of the dopant layer, but a layer similar
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to an atomic layer may be formed on the surface. The ratio
of Si/N/H (i.e., the ratio of Si-containing gas/N-containing
gas/H-containing gas) may be in a range of 2/(5-20)/(3-10)
(Si<H<N), typically 2/10/5. Additionally, if the duration of
the surface treatment is shorter than 3 seconds, whereas if
the duration of the surface treatment is longer than 20
seconds.

Upon the surface treatment of the surface of the dopant
layer, a SiN cap layer is continuously formed without being
exposed to air or other oxygen-containing atmosphere. In
some embodiments, the SiN cap layer may be formed by
cyclic CVD or PEALD, one cycle of which cyclic CVD is
conducted under conditions shown in Table 3 below. In
cyclic CVD, a precursor for a SiN cap layer is typically
pulsed while other gases and RF power are continuously
charged; however, in place of or in addition to the precursor
flow, RF power and any of the other gases can be pulsed as
long as plasma reaction can occur in the reaction space,
rather than on the substrate surface as in ALD. In some
embodiments, the pressure of the reaction space is substan-
tially constant while conducting cyclic CVD, wherein the
pressure can be maintained by, e.g., switching precursor
flow and inactive gas flow while continuously feeding the
precursor and the inactive gas using a gas flow system
illustrated in FIG. 1B which is explained later.

TABLE 3

(the numbers are approximate)
Conditions for SiN Cap Formation (cyclic CVD)

Substrate temperature 100 to 550° C. (preferably 200 to 300° C.)
(the temperature of the wall is typically
about 130° C., and the temperature of the
showerhead is typically about 150° C.)

50 to 1,000 Pa (preferably 200 to 400 Pa)
Silicon-containing precursor such as SiH,,
Si,Hy.

0.05 to 5.0 sec (preferably 0.1 to 3)
Nitridizing gas such as nitrogen gas, NH3
10 to 2000 scem (preferably 50 to 1000

Pressure
Silicon precursor

Silicon precursor pulse
Reactant
Flow rate of reactant

(continuous) scem)

Dilution gas (rare gas) He, Ar

Flow rate of dilution gas 100 to 6000 scem (preferably 1000 to
(continuous) 5000 scem)

RF power (13.56 MHz) for a
300-mm wafer (continuous)
Thickness of film

10 to 1,000 W (preferably 20 to 500 W)

0.5 to 10 nm (preferably 0.5 to 5 nm)

In some embodiments, the SiN cap formation can be
accomplished by PEALD under conditions similar to those
indicated in Table 3 except that purging (e.g., 0.1 to 10.0
seconds, preferably 0.3 to 5 seconds) is conducted after the
silicon precursor pulse, RF power is pulsed (e.g., 0.1 to 10
seconds, preferably 0.5 to 5 seconds), and after the RF
power pulse, purging is conducted (e.g., 0.1 to 10 seconds,
preferably 0.1 to 4 seconds).

In some embodiments, the gases and their flow rates used
for the SiN cap formation are identical to those used for the
surface treatment, and the SiN cap formation can be con-
tinuously conducted upon completion of the surface treat-
ment. In some embodiments, Ar is used as a purge gas and
continuously flows through its supply line, thereby flowing
into the reaction space when the silicon precursor is not fed
to the reaction space or flowing into a vent line when the
silicon precursor is fed to the reaction space by valve
switching. In some embodiments, the purge gas is Ar at a
flow rate of about 950 sccm to about 2,000 sccm.

In some embodiments, the cap layer is directly over and
contacting the dopant layer which has been treated with a
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treating gas. The cap layer is constituted by SiN. Since the
surface of the dopant layer is covered with the SiN cap layer
without being exposed to air, the SiN cap layer can effec-
tively maintain As concentration in the dopant layer even if
the thickness of the SiN cap layer is small such as less than
2 nm in some embodiments.

In some embodiments, the ALD cycle disclosed in U.S.
Patent Application Publication No. 2013/0115763, the dis-
closure of which is incorporated by reference in its entirety,
can be employed for the cap layer.

In some embodiments, after depositing the cap layer, the
substrate is subjected to annealing to diffuse As into sub-
strate. In some embodiments, the annealing may be con-
ducted under conditions shown in Table 4 below.

TABLE 4

(the numbers are approximate)
Conditions for Annealing

Substrate temperature
Pressure

Atmosphere

Duration of annealing

600 to 1500° C. (preferably 900 to 1100° C.)
101325 Pa

N,, H,

1 to 120 sec (preferably 1 to 60 sec)

The embodiments will be explained with respect to pre-
ferred embodiments. However, the present invention is not
limited to the preferred embodiments.

FIG. 1A is a schematic view of a PEALD apparatus,
desirably in conjunction with controls programmed to con-
duct the sequences described below, usable in some embodi-
ments of the present invention. In this figure, by providing
a pair of electrically conductive flat-plate electrodes 4, 2 in
parallel and facing each other in the interior 11 of a reaction
chamber 3, applying HRF power (13.56 MHz or 27 MHz) 5
and LRF power of 5 MHz or less (400 kHz~500 kHz) 50 to
one side, and electrically grounding 12 to the other side, a
plasma is excited between the electrodes. A temperature
regulator is provided in a lower stage 2 (the lower electrode),
and a temperature of a substrate 1 placed thereon is kept
constant at a given temperature. The upper electrode 4
serves as a shower plate as well, and reaction gas and rare
gas are introduced into the reaction chamber 3 through a gas
flow controller 23, a pulse flow control valve 31, and the
shower plate. Additionally, in the reaction chamber 3, an
exhaust pipe 6 is provided, through which gas in the interior
11 of the reaction chamber 3 is exhausted. Additionally, the
reaction chamber is provided with a seal gas flow controller
24 to introduce seal gas into the interior 11 of the reaction
chamber 3 (a separation plate for separating a reaction zone
and a transfer zone in the interior of the reaction chamber is
omitted from this figure). In some embodiments, the depo-
sition of ASG film, surface treatment, and deposition of SiN
cap are performed in the same apparatus such as that
described above, so that all the steps can continuously be
conducted without exposing the substrate to air or other
oxygen-containing atmosphere. In some embodiments, a
remote plasma unit can be used for exciting a gas.

In some embodiments, in the apparatus depicted in FIG.
1A, in place of the pulse flow control valve 31, a system of
switching flow of an inactive gas and flow of a precursor gas
can be used. FIG. 1B illustrates a schematic representation
of such a switching flow system. In (a) in FIG. 1B, valves
V1 (X) and V2 (R) are closed, and valves V1 (R) and V2 (X)
are open, so that a precursor gas flows to a vent via valve V1
(R), and an inactive gas flows to a reactor via valve V2 (X).
In (b) in FIG. 1B, by simultaneously closing valves V1 (R)
and V2 (X) and opening valves V1 (X) and V2 (R), the
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precursor gas is instantly directed to flow to the reactor, and
the inactive gas is instantly directed to flow to the vent,
without substantial changes in the flow rate while maintain-
ing continuous flows. The vent can be set downstream of an
exhaust, for example.

In some embodiments, the surface treatment can be con-
tinuously conducted in a chamber different from the cham-
ber used for the deposition of ASG film using a cluster
apparatus (a substrate is transferred between chambers via a
wafer-handling chamber without being exposed to air.

A skilled artisan will appreciate that the apparatus
includes one or more controller(s) (not shown) programmed
or otherwise configured to cause the deposition and reactor
cleaning processes described elsewhere herein to be con-
ducted. The controller(s) are communicated with the various
power sources, heating systems, pumps, robotics and gas
flow controllers or valves of the reactor, as will be appre-
ciated by the skilled artisan.

FIG. 2 is a schematic representation of lamination pro-
cesses (a) to (b), indicating schematic cross sections of a
partially fabricated integrated circuit according to a com-
parative example. In this example, an n-type doped film 21
is deposited on a Si substrate 22 in process (a), wherein the
n-type dopant may be phosphorus. Thereafter, a SiO, cap
film 23 is deposited on the surface of the n-type doped film
21 in process (b). Since phosphorus is used as n-type dopant,
no surface treatment is conducted, and the SiO, cap film is
used, high concentration of dopant with deep diffusion into
the Si substrate is likely to occur. In contrast, FIG. 3 is a
schematic representation of lamination processes (a) to (c),
indicating schematic cross sections of a partially fabricated
integrated circuit according to an embodiment of the present
invention. In this embodiment, an n-type doped film 31 is
deposited on a Si substrate 32 in process (a), wherein the
n-type dopant is arsenic. Thereafter, the surface of the
As-doped film 31 is treated in situ with a treating gas in
process (b), thereby covering the surface with a chemisorbed
treating gas 33. Thereafter, a SiN cap film 34 is deposited on
the treated surface of the As-doped film 31 in process (¢) (in
the figure, “LT-SiN cap” refers to low-temperature SiN cap
deposited by cyclic CVD or PEALD). Since arsenic is used
as n-type dopant, surface treatment is conducted in situ, and
the SiN cap film is formed in situ, high concentration of
dopant with shallow diffusion into the Si substrate can occur
(i.e., a low sheet resistance (Rs) and a low junction depth
(Xj) are realized at the interface).

The present invention is further explained with reference
to working examples below. However, the examples are not
intended to limit the present invention. In the examples
where conditions and/or structures are not specified, the
skilled artisan in the art can readily provide such conditions
and/or structures, in view of the present disclosure, as a
matter of routine experimentation. Also, the numbers
applied in the specific examples can be modified by a range
of at least £50% in some embodiments, and the numbers are
approximate.

EXAMPLES

An arsenosilicate glass (ASG) film was formed on a Si
substrate (®300 mm) by PEALD, one cycle of which was
conducted under the conditions shown in Table 5 below
using the PEALD apparatus illustrated in FIG. 1A (including
a modification illustrated in FIG. 1B) with the sequence
illustrated in FIG. 3.
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TABLE 5

(the numbers are approximate)
Conditions for ASG Film Deposition

Substrate temperature 300° C.

Pressure 400 Pa

Silicon precursor bis(diethylamino)silane (BDEAS)
Silicon precursor pulse 0.3 sec

Silicon precursor purge 0.8 sec

Dopant precursor Arsenic triethoxide
Dopant precursor pulse 0.3 sec

Dopant precursor purge 5.0 sec

Reactant 0,

Flow rate of reactant 500 scem
(continuous)

Dilution gas (rare gas) Ar

Flow rate of dilution gas 2200 scem
(continuous)

RF power (13.56 MHz) for a 200 W

300-mm wafer

RF power pulse 0.4. sec

Purge upon the RF power pulse 0.1 sec

Thickness of film 5 nm

The dopant layer was treated in situ with a treating gas
under conditions shown in Table 6 below in the same
apparatus.

TABLE 6

(the numbers are approximate)
Conditions for Surface Treatment

Substrate temperature 300° C.
Pressure 300 Pa
Si-containing gas SiH,

Flow rate of Si-containing gas 200 scem
(continuous)

N-containing gas N,

Flow rate of N-containing gas 1,000 scem
(continuous)

H-containing gas H,

Flow rate of H-containing gas 500 scem
(continuous)

Ratio of SI/N/H 2/10/5
Dilution gas (continuous) Ar (1,800 scem); He (1,500 scem)
Duration of Treatment 20 sec

Thereafter, a SiN cap layer was formed in situ by cyclic
CVD, one cycle of which was conducted under conditions
shown in Table 7 below in the same apparatus (the gases and
their flow rates were substantially the same as those for the
surface treatment).

TABLE 7

(the numbers are approximate)
Conditions for SiN Cap Formation

Substrate temperature 300° C.
Pressure 300 Pa
Silicon precursor SH,
Silicon precursor pulse 0.2 sec
Reactant H,, N,
Flow rate of reactant (continuous) H,: 500 scem; N2: 1,000 scem
Dilution gas (rare gas) Ar, He
Flow rate of dilution gas (continuous)  Ar: 1,800 scem; He: 1,500 scem
Purge gas Ar
Flow rate of purge gas (switching 1,800 scem

between precursor and purge gas)
RF power (13.56 MHz) (continuous) for 35 W
a 300-mm wafer

Thickness of film 5 nm

After depositing the cap layer, the substrate was subjected
to annealing to diffuse As into Si substrate under conditions
shown in Table 8 below.
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TABLE 8

(the numbers are approximate)
Conditions for Annealing

Substrate temperature 1035.° C.
Pressure 101325 Pa
Atmosphere He
Duration of annealing 1.5 sec

As comparative examples, the following structures were
produced:

TABLE 9

Name in FIG. 4  Remarks

“ASiO2 cap” A SiO, cap was formed by PEALD

in place of the SiN cap of the example.

“AHT-SIN cap” A SiN cap was formed by LPCVD (at 690° C.)
without the surface treatment of the example.

“@No cap” No cap was formed on a PSG film formed in place of
the ASG film of the example.

“@Si02 cap” A SiO, cap was formed by PEALD
in place of the SiN cap of the example, on a PSG
film formed in place of the ASG film of the example.

“OAs IT? As was doped by ion implantation.
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4. It is surprising that by forming on a Si substrate an ASG
film which is surface-treated and then covered with a SiN
cap (in-situ SiN cap), high concentration and shallow dif-
fusion of dopant can be satisfied to the extent satisfying an
Rs of less than 1000 ohm/seq and an Xj (depth of SE+18) of
less than 10 nm, more preferably an Rs of less than 500
ohm/seq and an Xj (depth of SE+18) of less than 5 nm. The
above properties are highly suitable for extension doping for
FinFET devices, especially where the fin width is 10 nm (if
dopant diffuses at a depth of 5 nm from both sides of the fin,
the device will remain in an ON state, and will become
non-functional).

It will be understood by those of skill in the art that
numerous and various modifications can be made without
departing from the spirit of the present invention. Therefore,
it should be clearly understood that the forms of the present
invention are illustrative only and are not intended to limit
the scope of the present invention.

We Claim:

1. A method for forming on a substrate a doped silicon
oxide film with a cap film, comprising:

(1) forming an arsenosilicate glass (ASG) film having a

25 . . . : o

Upon the annealing, the obtained films were analyzed in de;lred thickness as an. arsenic (As)-doped silicon
terms of sheet resistance (Rs) and junction depth (Xj). The . oxide film on a substrate; . . .
results are shown in Table 10 below. The results are also (it) after completion of step (i), continuously treating a
shown in FIG. 4. FIG. 4 is a graph showing a target area surface of the ASG film with a treating gas constituted
defined by sheet resistance (Rs) and junction depth (Xj) s, by Si, N, and H withqut excitation of the treating gas so
according to the example of the present invention, in relation as to adsorb the treating gas on the surface of the ASG
to those of the comparative examples. The sheet resistance film; and
was measured using a CDE ResMAP 463 tool at 49 points (iii) after completion of step (ii), continuously forming a
on the substrate, and the junction depth was measured using silicon nitride (SiN) film as a cap film on the treating
an Atomika 4100 SIMS tool with a Cs primary beam. gas-adsorbed surface of the ASG film.

TABLE 10
(the numbers are approximate)
In-film
Dopant Surface conc. Xj@5E+18 Rs
In FIG. 4 layer treatment ~ Cap (atom/em®)  (atom/em®)  (ohm/sq)
AITSIN  ASG Yes LT-SiN 1.0E+22 2.7 354
cap 5 nm
A Si02 ASG No Sio 1.0E+22 1.5 3206
cap” 5 nm
A HTSIN  ASG No (air  HT-SIN  1.0E+22 2.9 6732
cap eXposure) 5 nm
® Nocap  PSG No Sio 6.0E+21 26.5 798
5 nm

@ Si02 cap  PSG No No 6.0E+21 13.5 3276
OAs VI N/A N/A N/A N/A 40 312

As shown in Table 10 and FIG. 4, except for “L’T-SiN cap”
(an example of the invention), none of the other films
satisfied an Rs of 1000 ohm/seq or less and an Xj of 10 nm
or less. Even the film doped by As ion implantation did not
satisfy the above criteria. Further, even though the ASG film
was used, and the SiN cap was formed thereon (in “HT-SiN
cap”), when the surface treatment was not conducted (in that
case, in order to deposit the SiN cap by PLCVD, the
substrate was transferred from the ALD chamber to the CVD
chamber and was exposed to air for about 3600 seconds),
although diffusion of dopant was shallow (Xj=2.9 nm),
dopant concentration was low (Rs=6732 ohm/sq). Only
“LT-SiN cap” satisfied high concentration of dopant
(Rs=354) with shallow diffusion of dopant (Xj=2.7 nm).
FIG. 5 is an illustrative representation of the graph of FIG.
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2. The method according to claim 1, wherein all the gases
including the treating gas used in step (ii) are identical to all
the gases used in step (iii).

3. The method according to claim 1 wherein in step (ii),
the treating gas is supplied with a noble gas.

4. The method according to claim 1, wherein the treating
gas comprises N, gas, SiH, gas, and H, gas.

5. The method according to claim 1, wherein step (ii) is
conducted at a temperature of 100° C. to 300° C.

6. The method according to claim 1, wherein the concen-
tration of As in the ASG film is approximately 1E+22
atom/cm”.

7. The method according to claim 1, wherein the thickness
of the ASG film formed in step (i) is approximately 5 nm or
less.
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8. The method according to claim 1, wherein in step (i),
the ASG film is formed by atomic layer deposition (ALD)
with solid-state doping.

9. The method according to claim 8, wherein the solid-
state doping is conducted at a temperature of approximately
300° C. or lower.

10. The method according to claim 8, wherein the ALD is
a plasma-enhanced ALD.

11. The method according to claim 1, wherein the thick-
ness of the SiN film formed in step (iii) is approximately 5
nm or less.

12. The method according to claim 1, wherein the sub-
strate is a silicon wafer.

13. The method according to claim 1, wherein the SiN
film is deposited by cyclic CVD.

14. The method according to claim 13, wherein the cyclic
CVD comprises feeding a precursor for the SiN film in
pulses to a reaction space while maintaining pressure of the
reaction space.

15. The method according to claim 1, further comprising,
after step (iii), annealing the SiN film formed on the ASG
film.

16. The method according to claim 15, wherein a sheet
resistance (Rs) and an As-junction depth (Xj) of SE+18
atom/cm’ at an interface between the ASG film and the
substrate after the annealing step are approximately 500
ohm/sq or less, and approximately 5 nm or less, respectively.

17. The method according to claim 15, wherein the in-film
concentration of As in the ASG film is approximately 1E+22
atom/cm?>.

18. The method according to claim 1, wherein steps (i) to
(iii) are conducted in a same reaction chamber.
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